Primer on the new DMSC Model-Based Characteristics (MBC) Standard

Curtis W. Brown Principal Engineer

Honeywell Federal Manufacturing & Technology*

*The Department of Energy's Kansas City National Security Campus is managed and operated by Honeywell Federal Manufacturing & Technologies, LLC under contract number DE-NA0002839c

with Mark Nielsen
Principal Consultant
TechAzul LLC

NSC-614-5877 dated January / 2024 Unclassified Unlimited Release

#ptcuserglobalsummit

Agenda

- Introduction
- Scope & Purpose
- Product Characteristics (PC)
- Augmentations
 - Criticality Classification (CC) Augmentation
 - Product Requirement Association (PRA) Augmentation
 - Verification Plan Requirement (VPR) Augmentation
- Product Characteristics Identification Framework
 - Reference ID
 - Instance ID
 - Use-Cases
- Applications
 - PTC Control Characteristics
 - QIF Characteristics
- Questions

BLUF – Bottom Line Up Front

The Digital Metrology Standards Consortium (DMSC), an ANSI standards development organization (SDO) and an ISO TC184 SC4 A-Liaison mber, has developed a new DMSC standard that de extends, and describes the usages of Mg/ ed Characteristics -Persistent Identification and ractices. Standardizes the use of (e.g., PTC, QIF) to ital thread within establish connection ect realization the model-based def process.

It should be available as a **free** download from the DMSC Q1CY24.

Introduction

DMSC MBC v1.0 2024 Model-Based Characteristics (MBC) standard:

- defines common nomenclature, definitions, symbols, data structures
- practices for identifying, communicating, and exchanging modelbased characteristics with various optional augmentations
- behaviors within a model-based system
 - through both a logical data model and supporting documentation.

DMSC MBC 1.0 - 2024

Model-Based Characteristics (MBC)

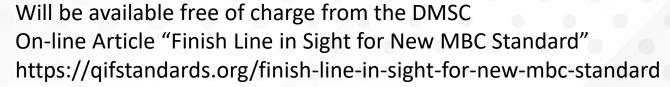
Persistent Identification and Related Digital Practices

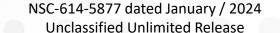
MBC Version 1.0

A Digital Metrology Standards Consortium, Inc. (DMSC) Standard

Copyright © 2024 by Digital Metrology Standards Consortium, Inc. (DMSC)

DMSC MBC v1.0 2024 - Outline


- ▶ Contents
- Foreword Introduction
- ↑ 1 Scope and Purpose
 - 2 Normative References
- 3 Terms and Definitions
- 4 Characteristics
- 5 Product Characteristics
- ▶ 7 Product Requirement Association (PRA) Augmentation
- ▷ 8 Verification Plan Requirement (VPR) Augmentation
- 9 MBC Structure Information Model
- ▶ 10 Informative Appendix


DMSC Model-Based Characteristics: Persistent Identification and Related Digital Practices

Digital Metrology Standards Consortium (DMSC) – developers and maintainers of the ANSI/ISO DMIS* and ANSI/ISO QIF**.

^{*} Dimensional Measuring Interface Standard (DMIS) – ISO 22093

^{**} Qualify Information Framework (QIF) – ISO 23952

DMSC MBC Working Group & Contributors

- Mark Nielsen, TechAzul (Chair)
- Curtis Brown, Honeywell FM&T (Vice-Chair, Editor)
- Ray Admire, Lockheed Martin.
- Hermit Vega Albino, Pratt & Whitney
- Rosemary Astheimer, NIST
- Ryan Bounds, Newport News Shipbuilding
- Kevin **Braun**, John Deere
- Larry Bergquist, SKF Group
- Daniel **Campbell**, Capvidia
- Jan De Nijs, Lockheed Martin
- Nathan Denver, L3Harris
- Zak Delphia, GE Aerospace
- Geoff Foulds, Origin International
- Sam Gambrell, Lockheed Martin
- Ryan Gelotte, John Hopkin, APL
- Jeremy Hamilton, Deere & Co.
- Simon Héroux, InnovMetric Logiciels
- Jennifer **Herron**, Action Engineering

- Duane Hess, Action Engineering
- Mario Hidalgo, Honeywell Aerospace
- Evan Kessick, Belcan
- Francois Klinkenberg, Herstal group
- Tom Kramer, Thomas Kramer Consulting
- Christopher Lalonde, Litens Automotive Partnership
- Larry Maggiano, Mitutoyo America Corp.
- Fred McMaier, Lockheed Martin
- John Tom Meeks, Boeing Co.
- Andrew Pierce, GE Appliances
- Jacob Sherwood, Pratt & Whitney
- Ray Stahl, 2BMobile
- Robert Stone, Origin International
- Jon Stothfang, B&W Software
- Annalise Suzuki, Elysium
- Mark Thomas, DMSC
- Mark White, LANL
- Benny Yap, Lam Research

Scope and Purpose:

- Establishes a **baseline** for **characteristics** that are applied to product definition.
- Focuses on Product Characteristics (PC) and their optional augmentations:
 - Criticality classifications (CC),
 - Product requirement associations (PRA), and
 - Verification plan requirements (VPR).
- Uniquely identifies verification requirement(s) from annotations and specification documentation. ("Taming the wild west of print ballooning the drawing" B. Stone)
- Introduces a **Product Characteristic identification framework** that specifies both the use of:
 - locally unique, human-readable tag identifiers coupled with
 - universally unique, machine-readable identifiers (UUIDs).

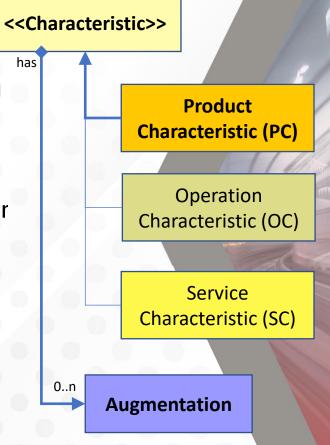
Scope and Purpose:

- Complements and contributes to extending the Quality Information Framework (QIF) via next-gen QIF.
- Enables connection points that establishes a digital thread at the PC definition level
- Facilitates persistent and explicit means for:
 - Identifying verification Items for a **Bill of Characteristics**
 - Referencing Items within product definition change control
 - Referencing Items within Non-Conformance Reports
 - Obfuscating Item's Sensitive Information
- Captures MPC framework as SysML block diagrams
- Describes **system behaviors** for model-based applications that produce and/or use product characteristics.

Terms and Definitions

Contains: Fifty-one Terms (noun, adjectives) w/ Definitions: (Samples)

- Characteristic
- Characteristic Augmentation
- Characteristic, Product (PC)
- Criticality Classification (CC)
- Designator
- Identifier, Product Characteristic Extension
- Identifier, Product Characteristic Instance
- Identifier, Product Characteristic Reference
- Model, Model-Based Definition (MBD)
- Product Requirement Association (PRA)
- Tag, Product Characteristic
- Tag, General
- Universally Unique Identifier
- Verification Plan Requirement (VPR)



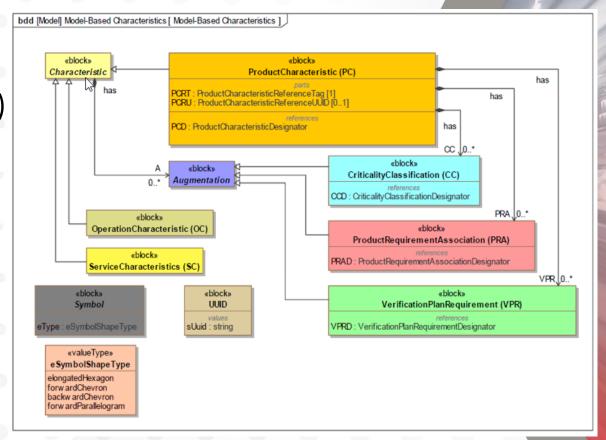
Mode-Based Characteristic (MBC)

Establishes a baseline for characteristics, they can be a:

- Product Characteristic (PC)
 - a characteristic, which is created to identify a verification requirement, applied to a feature or of a product, initiated during the product definition activity.
- Operation (Process) Characteristics (OC)
 - a characteristic, which is created to identify an operation or process requirement for the product realization process of a product or of a feature of a product.
- Service Characteristic (SC)
 - a characteristic, which is created to identify a service or maintenance requirement for the sustainment of a product or of a feature of a product.

Has zero or many augmentations:

This version of the MBC standard specifically focuses on product characteristics (PC) and their optional augmentations.


Product Characteristic (PC)

Is a Characteristic which is created to identify a verification requirement applied to a product or a feature of a product.

Has zero or many augmentations:

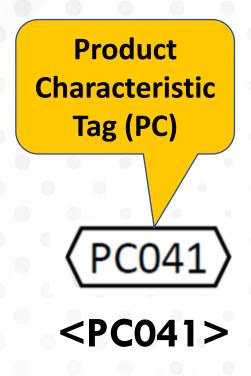
- Criticality Classification (CC)
- Product Requirement Association (PRA)
- Verification Plan Requirement (VPR)

Verification Requirements are tolerances or specifications applied to a part feature or product which requires verification to assure product acceptance, typically communicated via annotations, attributes, and/or specification documents.

Product Characteristic Identifier Structure

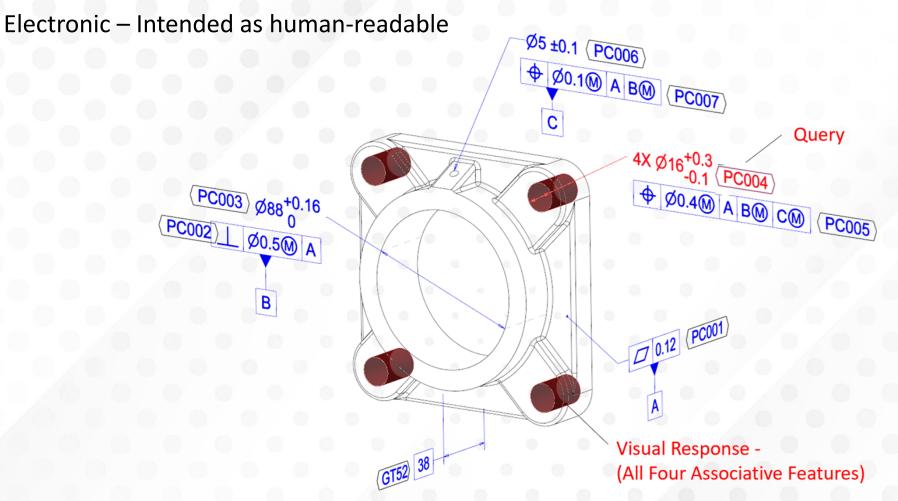
Locally Unique, Human-Readable Tag Identifier

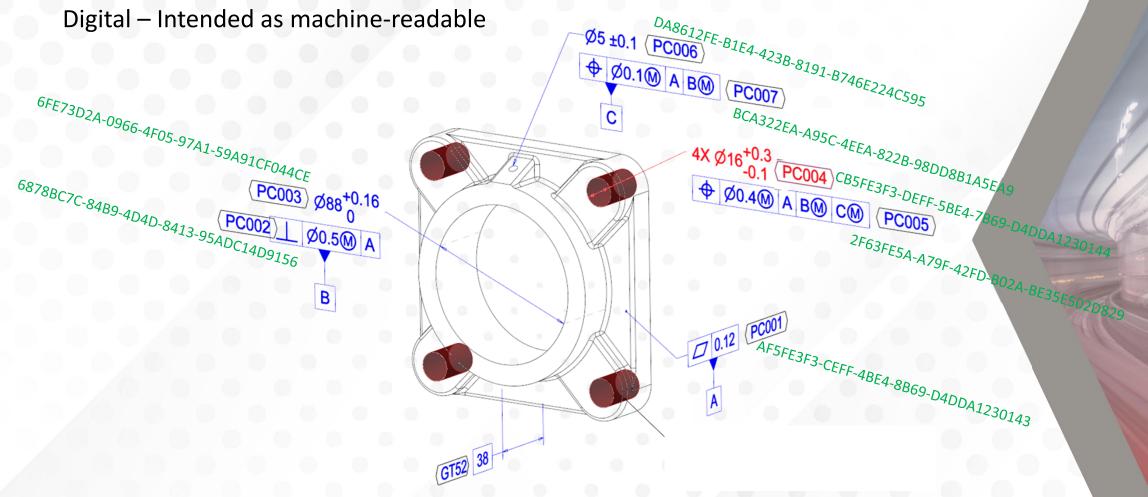
PC Tag Formats	With PC Prefix	Without PC Prefix
PC Designator Symbol	PC42	(007)
PC Designator Textual	<pc42></pc42>	<007>


PC Reference Tag Designator Presentation Examples

Universally Unique, Machine-Readable Identifying Attribute (UUID) DA8612FE-B1E4-423B-8191-B746E224C595

PC Reference UUID adheres to the ISO/IEC 9834-8 standard as a universal unique identifier


Product Characteristics Designations


PC Reference Tag

Product Characteristic (PC) Tag w/Annotation

Product Characteristic (PC) UUID Attributes

Representation of a Model-Based Definition with Product Characteristic Reference Tags & UUIDs

Product Characteristics Designations with all optional Augmentations Example

Product
Requirement
Association
(PRA)

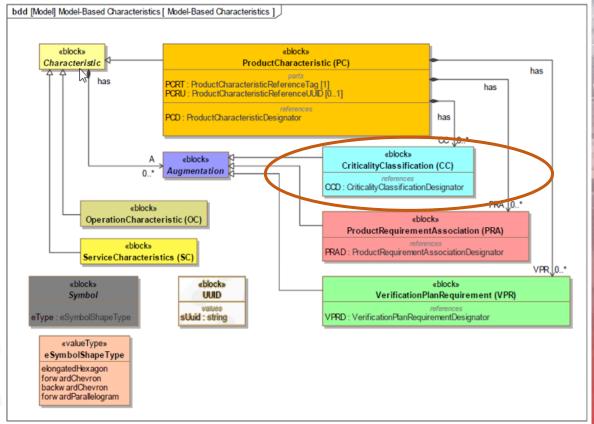
Product
Characteristic
Tag (PC)

Criticality
Classification
(CC)

Verification
Plan
Requirement
(VPR)

REQ-ME-044 PC041 CR:S.2 CMM:100%

<REQ-ME-044< <PC041> >CR: S.2> /CMM: 100%/


Product Characteristic (PC) w/CC

Is a Characteristic which is created to identify a verification requirement applied to a product or a feature of a product.

Has zero or many augmentations:

- Criticality Classification (CC)
- Product Requirement Association (PRA)
- Verification Plan Requirement (VPR)

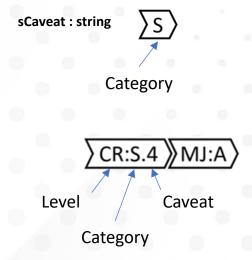
Verification Requirements are tolerances or specifications applied to a part feature or product which requires verification to assure product acceptance, typically communicated via annotations, attributes, and/or specification documents.cc

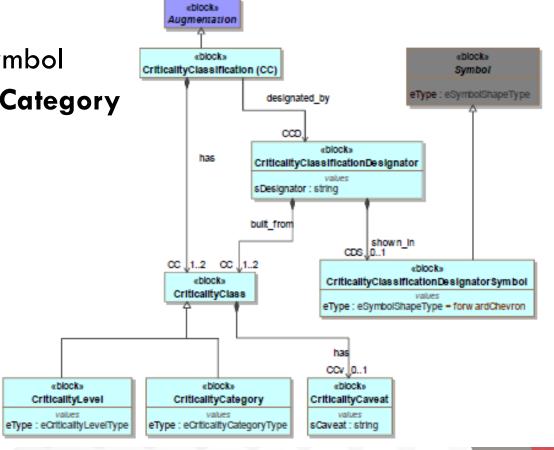
Criticality Classification (CC) Augmentation

• A PC may have one or many Criticality Classifications (CC)

CC is a PC Augmentation

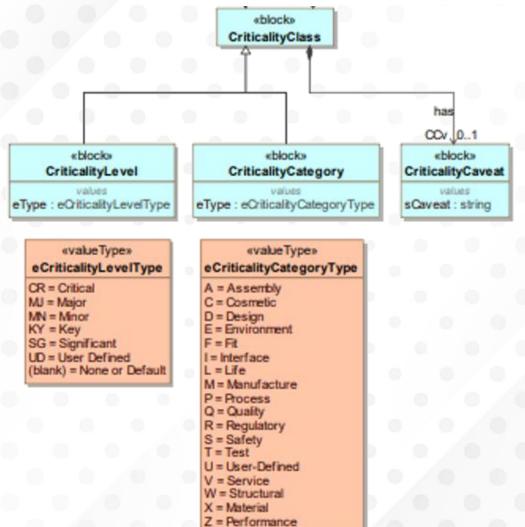
CC designates the criticality of the PC


CC has a designator w/Forward-Chevron symbol


CC has a Criticality Level and/or Criticality Category

CC may have a Criticality Caveat

«valueType»
eCriticalityLeveIType
CR = Critical
MJ = Major
MN = Minor
KY = Key
SG = Significant
UD = User Defined
(blank) = None or Default



bdd [Package] Criticality Classification [Criticality Classification

Criticality Levels, Categories, & Caveats

Product Characteristic Designation with an optional CC Augmentation Designation

PC Reference Tag with an Augmentation

Product Characteristic (PC) w/PRA

Is a Characteristic which is created to identify a verification requirement applied to a product or a feature of a product.

Has zero or many augmentations:

- Criticality Classification (CC)
- Product Requirement Association (PRA)
- Verification Plan Requirement (VPR)

Verification Requirements are tolerances or specifications applied to a part feature or product which requires verification to assure product acceptance, typically communicated via annotations, attributes, and/or specification documents.cc

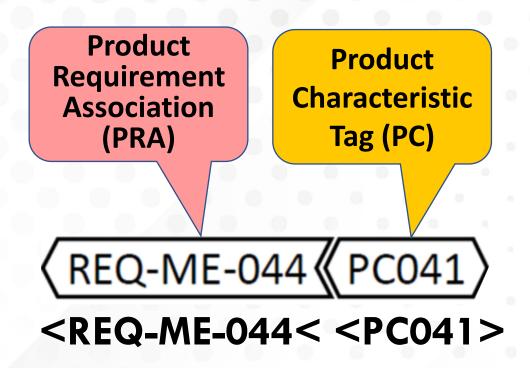
Product Requirement Association (PRA) Augmentation

A PC may have one or many Product Requirement Associations (PRA)

- PRA is an PC Augmentation
- PRA designates/associates the Product Requirement driving this PC

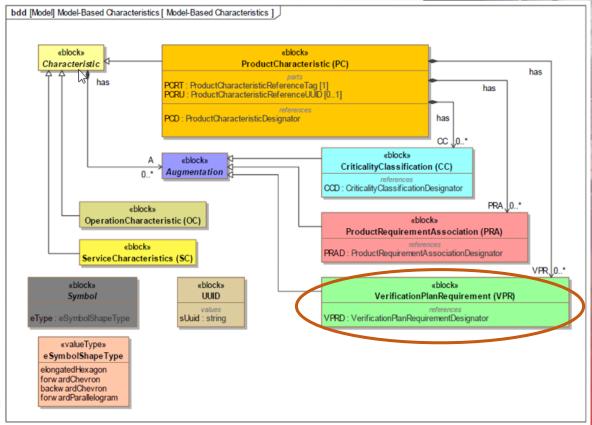
bdd [Model] Model-Based Characteristics [ProductRequirementAssociation

- PRA has a Designator w/Backward-Chevron Symbol
- PRA may have a UUID


PRA may have a Reference Link

REQ-MD-44

Product Characteristic Designation with an optional PRA Augmentation Designation


Product Characteristic (PC) w/VPR

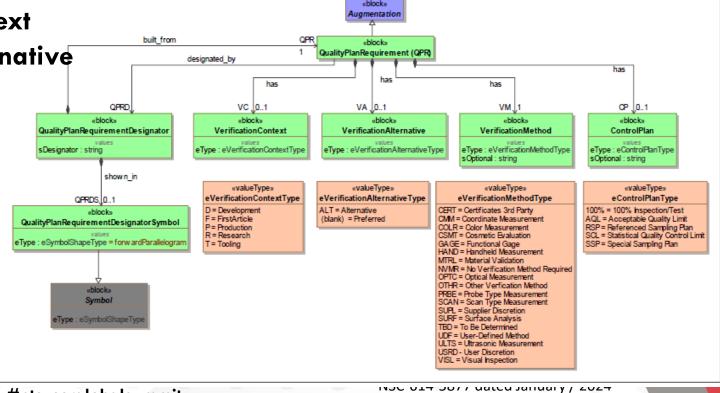
Is a Characteristic which is created to identify a verification requirement applied to a product or a feature of a product.

Has zero or many augmentations:

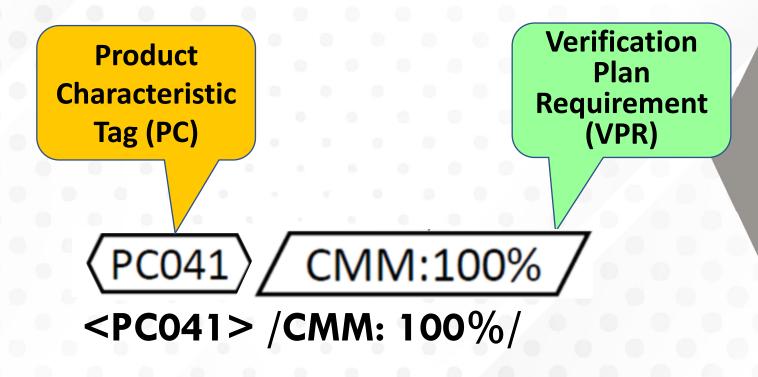
- Criticality Classification (CC)
- Product Requirement Association (PRA)
- Verification Plan Requirement (VPR)

Verification Requirements are tolerances or specifications applied to a part feature or product which requires verification to assure product acceptance, typically communicated via annotations, attributes, and/or specification documents.cc

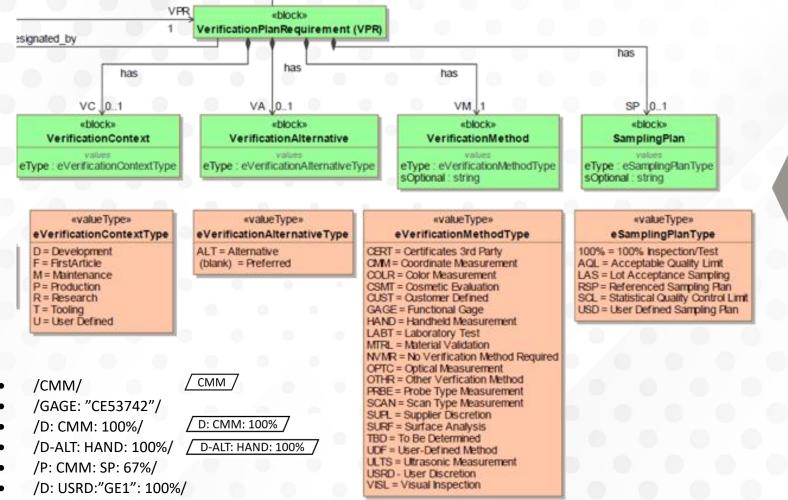
Verification Plan Requirement (VPR) Augmentation


bdd [Model] Model-Based Characteristics [QualityPlanRequirement]

A PC may have one or many Verification Plan Requirements (VPR)


- VPR is a PC Augmentation
- VPR designates requirements for the product Verification Plan
- VPR has a Designation w/Forward-Parallelogram Symbol
- VPR has a Verification Method
- VPR may have a Verification Context
- VPR may have a Verification Alternative
- VPR may have a Sampling Plan

D: CMM: 100% /
D-ALT: HAND: 100% /
P: CMM: SP: 67% /


Product Characteristic Designation with an optional VPR Augmentation Designation

PC Reference Tag with an Augmentation

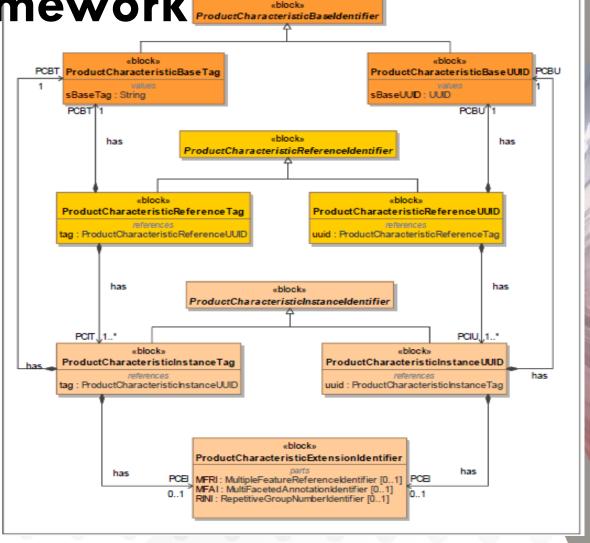
Verification Plan Requirement (VPR) Method, Context, Alternative, Sampling Plan

Product Characteristics Designations with all optional Augmentations Example

Product
Requirement
Association
(PRA)

Product
Characteristic
Tag (PC)

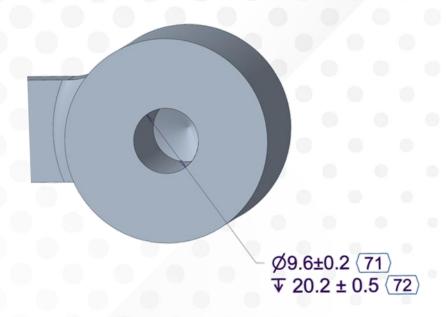
Criticality
Classification
(CC)

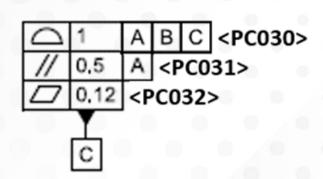

Verification
Plan
Requirement
(VPR)

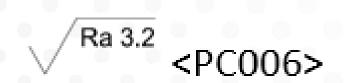
REQ-ME-044 PC041 CR:S.2 CMM:100%

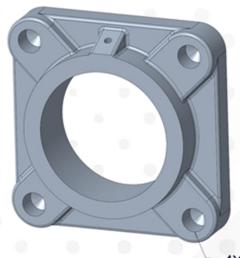
<REQ-ME-044< <PC041> >CR: S.2> /CMM: 100%/

- Human & Computer Identifiers
 - Tags
 - UUIDs
- Base Identifier, basis for:
 - Reference Identifiers
 - Instance Identifiers
- Reference Identifiers
- Instance Identifiers
- Extension Identifiers
 - Uniquely extends Instance ID
 - Multi-Faceted Annotation
 - Multiple Feature Reference
 - Repetitive Group Number


bdd [Model] Model-Based Characteristics [ProductCharacteristicIdentifiers


PC Identification Framework - PC Reference ID


- PC Reference Identifier Section [5]
 - Associated with Annotation [Verification Requirement] (e.g., Tolerance, Specification)
 - Has a human-readable PC Reference Tag
 - Shown with Annotation [Verification Requirement]
 - Should have a computer-readable PC Reference UUID
 - Has one or many PC Instance Identifiers
 - As Human-Readable PC Instance Tag
 - As Computer-Readable PC Instance UUID
- Non-PC General Tag (GT) Section [5.19]
 - Shown with annotation [Non-Verification Requirement] (e.g., BASIC Dimension)



Product Characteristic for an Application [5.6]

NSC-614-5877 dated January / 2024 Unclassified Unlimited Release

- The PC Reference Identifier and PC Instance Identifier are both built from a common PC Base Identifier.
- PC ID can be a human-readable Tag or computer-consumable UUID

PC Reference ID

PC007

<PC007>

Is a Base ID housed within a Symbol or Bookend with "<" and ">";
Used to designate a

Product Characteristic

PC Base ID

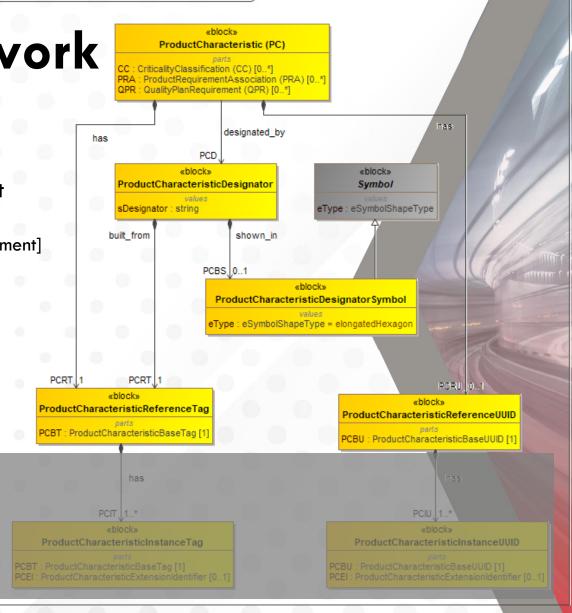
PC007

Common Base ID for both Reference ID and Instance ID

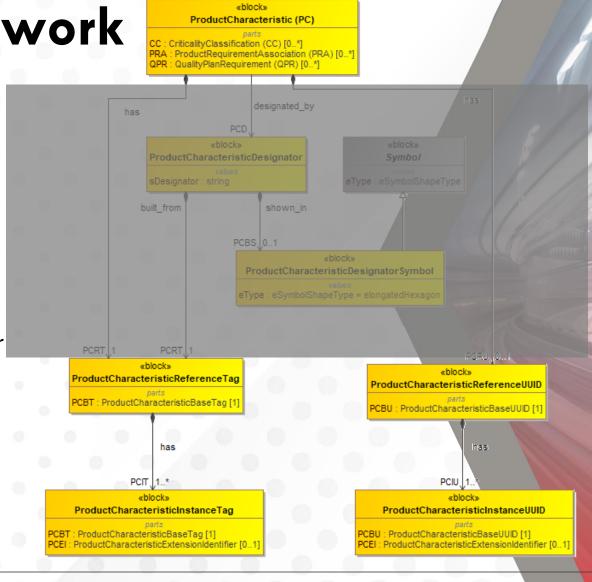
PC Instance ID

PC007a.1:1

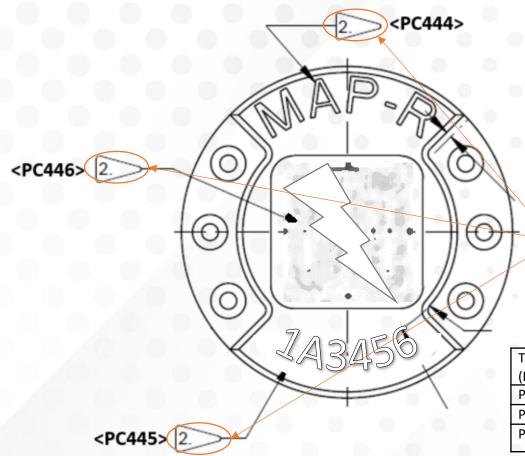
Is a Base ID concatenated with an Extension ID.


Used to designate multiverification instance use-cases.

PC Extension ID


- Multi-Faceted Annotation
- Multiple Feature Reference
- Repetitive Group Number

#ptcuserglobalsummit


- Has a PC Reference Tag
 - Is a human-readable PC **Reference** Identifier
 - Is shown/identified with a Verification Requirement
 - CAD Annotation [Verification Requirement]
 - Non-CAD Specification/Requirement [Verification Requirement]
 - Is associated with PC Reference UUID
 - Has one or many PC Instance Tags
- Has a PC Reference UUID
 - Is a computer-consumable PC Reference Identifier
 - Is associated with PC Reference Tag
 - Has one or many PC Instance UUIDs
- Designated by a PC Designator
 - Shown in a PC Designator Symbol
 - Built from the PC Reference Tag

- PC Reference has one or many PC Instances
- A PC Instance Tag
 - Is a human-readable PC Instance Identifier
 - Is associated with PC **Reference** Tag
 - Shares PC Base Tag with PC Reference Tag
 - Has a PC Extension Tag
- A PC Instance UUID
 - Is a computer-consumable PC Instance Identifier
 - Is associated with PC Reference UUID
 - Shares PC Base Tag with PC Reference Tag
 - Has a PC Extension Tag
- Designated by a PC Designator
 - Built from the PC Reference ID's Base ID
 - Built from the PC Reference Tag

Product Characteristics - Flagged Notes

NOTES:

- PRODUCT CHARACTERISTICS ARE DENOTED BY <PC####>. GENERAL TAGS ARE DENOTED BY <GT####>. THESE SYMBOLS ARE USED TO REFER TO CORRESPONDING ANNOTATIONS.
 - 1A. THERE ARE 52 PRODUCT CHARACTERISTICS ON THIS DRAWING. THE NUMBERS RANGED FROM PC0001 TO PC0054. NUMBERS NOT USE ARE: PC0013.
 - 1B. THERE ARE 27 GENERAL TAGS ON THIS DRAWING. THE NUMBERS RANGED FROM GT5000 TO GT5026. NUMBERS NOT USED ARE: NONE.
- 2. PART MARKINGS:
 - 2 MRK PART NAME, PART NUMBER, AND LOGOS AS SHOWN PER CLASS K-1-A, PER

Tag	UUID (Base)	Description
(Base)		
PC444	f0079160-e989-420a-b83a-19df30d57c7b	Marking of Part Name
PC445	7f92f319-3175-4214-8eb2-62f857f1c3b4	Marking of Part Number
PC446	5ce27d7f-e66d-404a-8327-d7c24229b20d	Marking of Logo

Product Characteristics - Supplemental Specification Document

SS1A345

Special Specifications for part 1A345:

1 – Special Workmanship

1.1 - Statement about ...

1.2 - Statement about ...

1.3 - Statement about ...

<PC901> 1.4 – Verify that ...

<PC902> 1.5 - Verify that ...

1.6 - Statement about ...

<PC903> 1.7 – Verify that ...

<PC904> 1.8 - Verify that ...

2 - Special Markings

2.1 - Statement about ...

<PC905> 2.2 – Verify that ...

2.3 - Statement about ...

Tag	UUID (Base)	Description
(Base)		
PC901	48bf4540-63eb-4460-999d-bdaffad3f793	Doc. SS1A345, Sect. 1.4
PC902	af11745b-d897-491c-8887-05404c5941cc	Doc. SS1A345, Sect. 1.5
PC903	9e2f8155-113d-4f0d-8159-b766c836065d	Doc. SS1A345, Sect. 1.7
PC904	ecf53b0d-8891-4634-8cb9-0dd50ac25e53	Doc. SS1A345, Sect. 1.8
PC905	7bbfbae1-65d8-4970-9987-da22e84f5403	Doc. SS1A345, Sect. 2.2

Product Characteristics - General Notes

Only notes that have a verify or shall statement (e.g., verification requirement) should be tagged as a PC

5.6.5 Individual General Notes

NOTES:

1. First General Note

<PC825> 2. Second General Note with verify ...

<PC826> 3. Third General Note with verify ...

<PC827> 4. Deleted General Note with verify ...

5. Fifth General Note

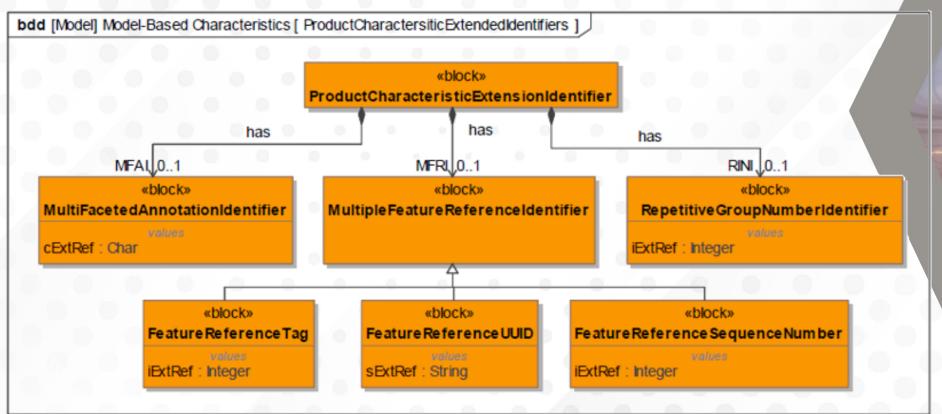
5.8.6 Group General Note:

(PC811) NOTES:

- 1. First General Note
- 2. Second General Note with verify ...
- 3. Third General Note with verify ...
- 4. Deleted General Note with verify ...
- 5. Fifth General Note

Tag	3	UUID (Base)	Description
(Ba	ise)		
PC	825	1af1745b-d897-491c-8887-05404c5941cc	Second General Note
PC	826	29ef8155-113d-4f0d-8159-b766c836065d	Third General Note
PC	827	cef53b0d-8891-4634-8cb9-0dd50ac25e53	Deleted General Note

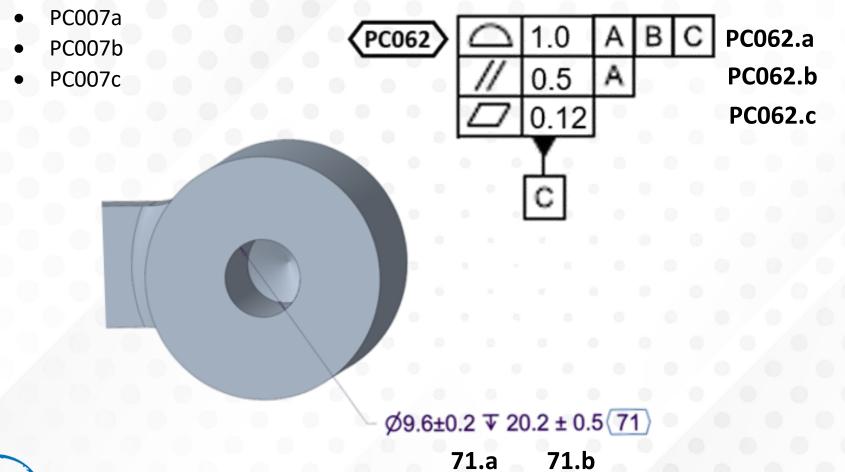
DC Base ID	PC Extension ID		DC Instance ID Evample	
PC Base ID	MFAI	MFRI	RGNI	PC Instance ID Example
PC811	n	Υ	n	PC811.2
PC811	n	Υ	n	PC811.3
PC811	n	Υ	n	PC811.4


PC Identification Framework

- PC Instance Identifier
 - Has a PC Reference Identifier
 - Can be a PC Instance Tag
 - Can be a PC Instance UUID
 - Built from a PC Base Identifier AND one or more PC Extension Identifiers
- PC Base Identifier
- PC Extension Identifier
 - Has zero or one Multi-Faceted Annotation Identifier (MFAI)
 - Has zero or one Multiple Feature Reference Identifier (MFRI)
 - Can be a Feature Reference Tag
 - Can be a Feature Reference UUID
 - Can be a Feature Reference Sequence Number
 - Has zero or one Repetitive Group Number Identifier (RGNI)

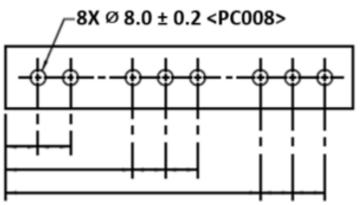
Product Characteristic Extension Identifiers

 The Instance Identifier is extended by the Extension Identifier for use-cases involving multi-faceted annotations, multiple feature references, and repetitive groups.



PC Extension Identifiers

- Multi-Faceted Annotations Identifier (MFAI). See section 5.4.7.1 for more details.
 - PC007a
 - PC007b
 - PC007c
- Multiple Feature Reference Identifier (MFRI). See section 5.4.7.2 for more details.
 - Feature Reference Tag (FRT). See section 5.4.7.2.1 for more details.
 - PC007.518
 - PC007.1961
 - PC007.1982
 - Feature Reference UUID (FRU). See section 5.4.7.2.2 for more details.
 - PC007. A64B5992-3A8B-456C-81E6-39020C268C13
 - PC007. C3F0BAB3-DA40-4C21-B04B-DC495336A4D0
 - Feature Reference Sequence Number (FRSN). See section 5.4.7.2.3 for more details.
 - PC007.1
 - PC007.2
 - PC007.3
- Repetitive Group Number Identifier (RGNI). See section 5.4.7.3 for more details.
 - PC007.1:1
 - PC007.1:**2**
 - PC007.1:3

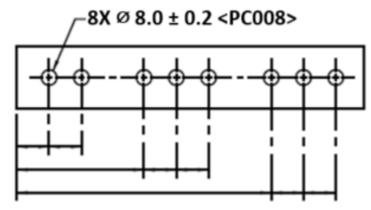


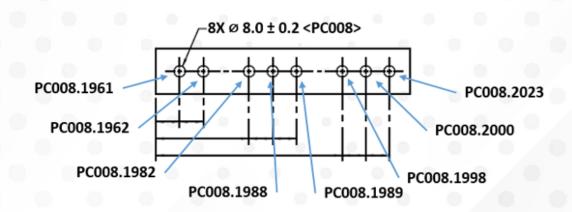
PC Instance w/derived Multi Faceted Annotation [5.8]

PC Instances with Multiple Feature References

Example:

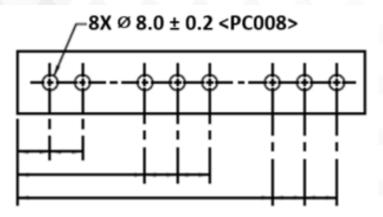
Repetitive Feature Tolerance with Reference Tag

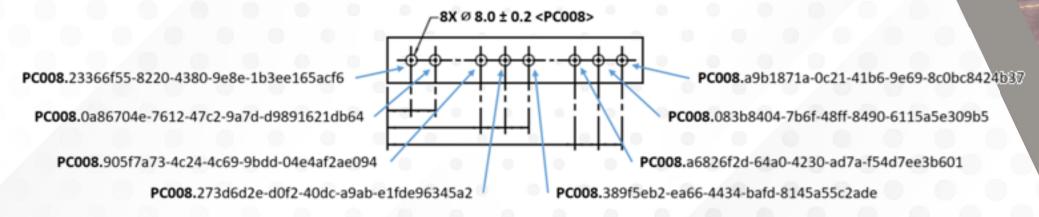

- PC Reference Tag <PC008> is applied to eight different features!
 - Thus <PC008> has eight verification occurrences.
- So, how do we specify each feature instance?
 - With a unique PC Instance Tag for each verification occurrence.
 - Which, requires a unique Feature Reference Tag for each multiple feature PC Instance Tag
- DMSC MBC allows for three approaches based upon the maturity and capabilities of the application system and/or organizational business practices.
 - By FeatureReferenceTag (e.g., 518, 1961, 1982)
 - By FeatureReferenceUUID (e.g., A64B5992-3A8B-456C-81E6-39020C268C13, C3F0BAB3-DA40-4C21-B04B-DC495336A4D0)
 - By FeatureReferenceSequenceNumber (e.g., 1, 2, 3, 4)


Dimensional Tolerance w/Multiple Feature Instances

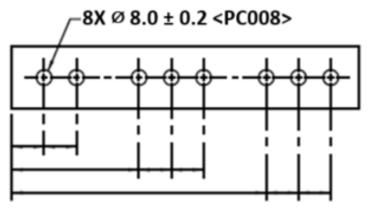
Repetitive Feature Size
Tolerance with PC Instance
Tags using the modeler's
Feature Reference Tag

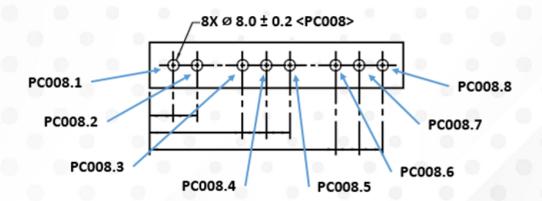
- PC008.1961
- PC008.1962
- PC008.1982
- PC008.1988
- PC008.1989
- PC008.1998
- PC008.2000
- PC008.2023




Repetitive Feature Size Tolerance with Reference Tag

Dimensional Tolerance w/Multiple Feature Instances

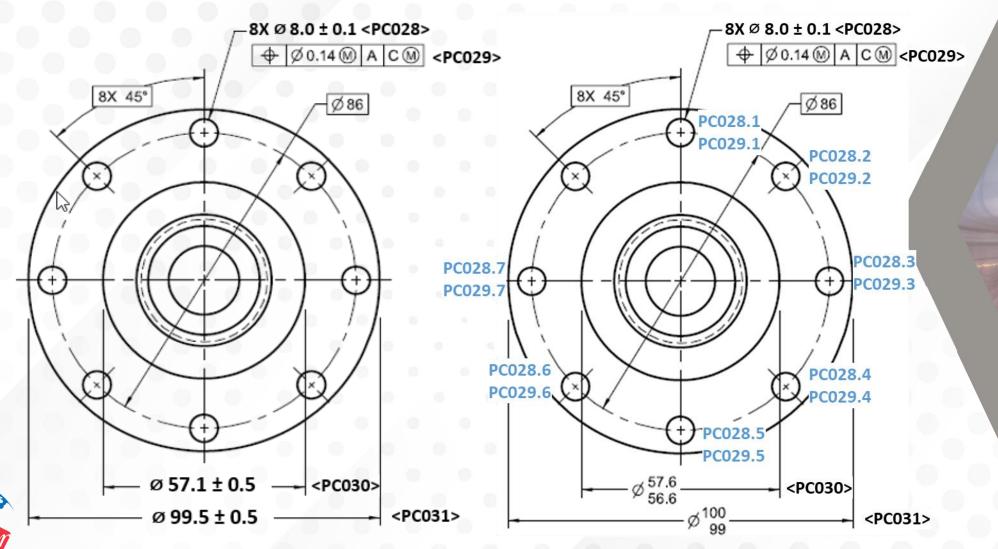




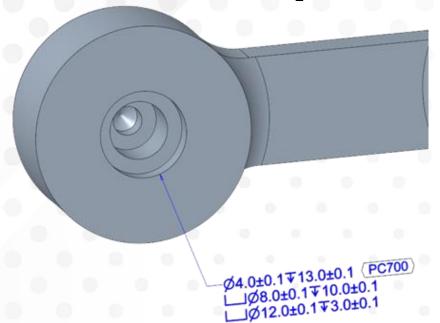
Repetitive Feature Size Tolerance with PC Instance Tags using Feature Reference UUID

Dimensional Tolerance w/Multiple Feature Instances

Repetitive Feature Size Tolerance with Reference Tag



Repetitive Feature Size Tolerance with Instance Tags using a **Feature Sequencing** algorithm


- PC008.1
- PC008.2
- PC008.3
- PC008.4
- PC008.5
- PC008.6
- PC008.7
- PC008.8

Geometric Tolerance w/Multiple Feature Instances

PC with Mixed Multiple Extensions

- PC700a.1
- PC700b.1
- PC700a.2
- PC700b.2
- PC700a.3
- PC700b.3

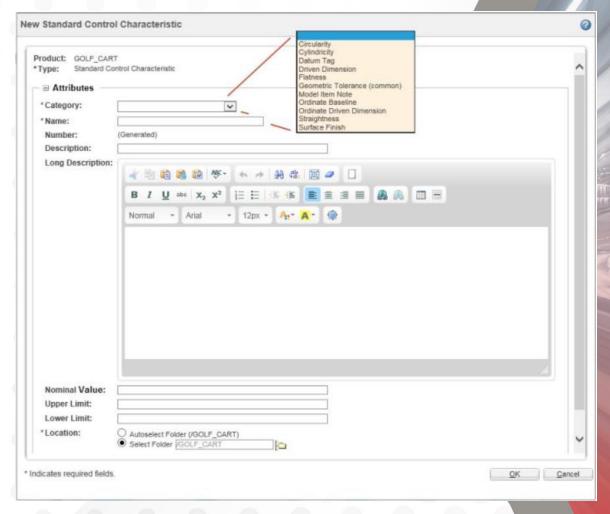
Tag	Tag	UUID (Base)	UUID	Description
(Base)	(Ext)		(Ext)	
			1000	
PC700	a.1	3f2e8414-5074-48c9-976f-0b890cefcd00	a.1	± 0.1 for Ø 4.0 Diameter
PC700	b.1	3f2e8414-5074-48c9-976f-0b890cefcd00	b.1	± 0.1 for ↓ 13.0 Hole Depth
PC700	a.2	3f2e8414-5074-48c9-976f-0b890cefcd00	a.2	± 0.1 for Ø 8.0 Counterbore Diameter
PC700	b.2	3f2e8414-5074-48c9-976f-0b890cefcd00	b.2	± 0.1 for ↓ 10.0 Counterbore Depth
PC700	a.3	3f2e8414-5074-48c9-976f-0b890cefcd00	a.3	± 0.1 for Ø 12.0 Counterbore Diameter
PC700	b.3	3f2e8414-5074-48c9-976f-0b890cefcd00	b.3	± 0.1 for ↓ 3.0 Counterbore Depth

Other PC Use-Cases

- 5 Product Characteristics
 - ▶ 5.1 Identification
 - 5.2 Data Structure

5.5 Annotation Applications

- 5.6 Single Product Characteristic with Single Application (Feature)
- ▶ 5.7 Single Product Characteristic with Defined Multi-Faceted Annotation
- ▷ 5.8 Single Product Characteristic with Derived Multi-Faceted Annotation
- 5.9 Single Product Characteristic with Multiple Feature References Applications
- 5.10 Single Product Characteristic including Repetitive Group Applications
- 5.11 Single Product Characteristic with Mixed Multiple Extension Applications
- ▷ 5.13 Product Characteristics in Support Documents (Text-based support artifacts)
- 5.14 Product Characteristics in System Information Models
 - 5.15 Product Characteristics on Surrogate Surfaces
 - 5.16 Product Characteristics on Representative Test Artifacts
 - 5.17 Product Characteristics on Embellished Derivatives
- 5.18 Application to Serialized Parts which enables Digital Twins
- 5.19 Non-Product Characteristics, General Tag

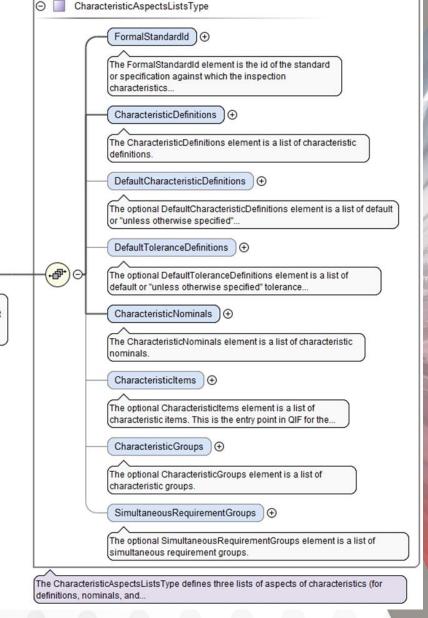


PTC's Control Characteristics and DMSC's Product Characteristics

- Within a process, part, assembly, or system, PTC control characteristics are any functional features, geometrical or material properties, that can be qualified, measured, or quantified and for which variation or deviation control is necessary.
- Assume that PTC's Control Characteristics are conceptually similar to DMSC's Product Characteristics.
- Can PTC Control Characteristics functionality be extended to support the MBC Product Characteristics DMSC standard?
 - Creo (Designate an annotation in Creo as a control Characteristic)
 - PDMLink (Designated Control Characteristic are created in PDMLink upon check-in)
 - MPMLink (Designated Control Characteristic are used in MPMLink)
- Yes, by adding subtyping, data attributes, user symbols, and application behaviors!

PTC Control Characteristics

- MPMLink Attributes in Control Characteristics Tab
- The following attributes are present in the Control Characteristics tab of MPMLink BOM Transformer:
 - Number
 - Name
 - Severity (editable)
 - Description (editable)
 - · Model Item Graphical Representation (e.g., model item)
 - Version
 - Context
- You can edit the values Severity and Description of a control characteristic inline.
- If a model item is associated with a control characteristic, then the information about the model item is displayed in Model Item Graphical Representation.


PTC's Control Characteristics / DMSC's Characteristic Mapping (Proposed)

Control Characteristics	Characteristics
has: Number	has: UUID
has: Name	has: Tag
	has: Symbol
	has: Augmentations
	type: Product Characteristics (PC)
has: Severity (editable)	has: Criticality Classification (CC)
	has: Product Requirement Association (PRA)
	has: Verification Plan Requirement (VPR)
	type: Operation (Process) Characteristics
	type: Service Characteristics
has: Description (editable)	
has: Model Item Graphical Rep.	
has: Version	
has: Context	

35E PTC ENTRAIT LINEAR

QIF Characteristics

- Within QIF, the Characteristic object contains four types of characteristics aspects [QIF 5.9.3]
 - Definition
 - Nominal
 - Item
 - Measurement
- Characteristic Designation Includes optional:
 - Designation (Tag)
 - Criticality Level
 - UUID
- MPC includes a QIF Mapping/Comparison appendix [Annex J]
- The Next QIF (i.e., QIF 4.0) incorporates MPC characteristic capabilities.

Questions?

Thank You!

Fly-By of MBC Specification

Sections

- Terms & Definitions (noun, adjective)
- Product Characteristics (PC)
- Criticality Classifications (CC) Augmentation
- Product Requirement Association (PRA) Augmentation
- Verification Plan Requirements (VPR) Augmentation
- SysML Information Models
- Appendixes
 - A-N

Selection Criteria for a Characteristic Designator Symbol

- C1. Symbol must be a recognizable unique shape.
- C2. Symbol must be easily creatable using existing office/CAD tools.
- C3. Symbol must be able to enclose a set of alphanumeric identifiers.
- C4. Symbol must not conflict with other regularly used symbols in related ASME / ISO standards.
- C5. Symbol can be easily associated with an annotation (e.g., Dimensional Tolerance, Geometric Tolerance, Surface Texture, General Note, and Flagged Note).
- C6. Symbol must be able to accommodate Criticality symbol(s) before or after.
- C7. Symbol can be chained with one or more Product Requirement symbol(s).
- C8. Symbol must be easily created as a textual field.
- C9. Symbol must be applicable for 2D drawings, 3D drawings, and 3D MBDs.
- C10. Symbol can be both human-readable, and when implemented within a digital MBD, be machine-readable.
- C11. The digital implementation of the symbol instance should be digitally associated with the respective annotation.
- C12. The digital implementation of the symbol should digitally associate with a persistent universally unique identifier for the symbol instance.

